
Near memory data structure rearrangement

Maya Gokhale
Lawrence Livermore National

Laboratory, Livermore, CA
gokhale2@llnl.gov

Scott Lloyd
Lawrence Livermore National

Laboratory, Livermore, CA
lloyd23@llnl.gov

Chris Hajas
∗

University of Florida,
Gainesville, FL

hajas@hcs.ufl.edu

ABSTRACT
As CPU core counts continue to increase, the gap between
compute power and available memory bandwidth has widened.
A larger and deeper cache hierarchy benefits locality-friendly
computation, but offers limited improvement to irregular,
data intensive applications. In this work we explore a novel
approach to accelerating these applications through in-memory
data restructuring. Unlike other proposed processing-in-
memory architectures, the rearrangement hardware performs
data reduction, not compute offload. Using a custom FPGA
emulator, we quantitatively evaluate performance and en-
ergy benefits of near-memory hardware structures that dy-
namically restructure in-memory data to cache-friendly lay-
out, minimizing wasted memory bandwidth. Our results on
representative irregular benchmarks using the Micron Hy-
brid Memory Cube memory model show speedup, band-
width savings, and energy reduction. We present an API
for the near-memory accelerator and describe the interaction
between the CPU and the rearrangement hardware with ap-
plication examples. The merits of an SRAM vs. a DRAM
scratchpad buffer for rearranged data are explored.

CCS Concepts
•Computer systems organization → Parallel archi-
tectures; •Hardware→ Buses and high-speed links; Chip-
level power issues; Memory and dense storage;

Keywords
accelerator; data intensive; data rearrangement; energy; mem-
ory bandwidth; processing in memory

1. INTRODUCTION
The flattening of processor clock frequency has led to the

emergence of many-core CPUs exploiting massive spatial

∗Work done as student intern at LLNL.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’15, October 05-08, 2015, Washington DC, DC, USA
c© 2015 ACM. ISBN 978-1-4503-3604-8/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2818950.2818986

parallelism at a slower clock rate. The challenge of pro-
viding data to all the cores is addressed to a certain degree
through a deep memory hierarchy with multiple levels of suc-
cessively larger shared caches and high capacity, high band-
width stacked DRAM as main memory. The combination of
cache hierarchy to exploit spatial/temporal locality and high
bandwidth to accommodate streaming access patterns works
well for many workloads. However, applications that manip-
ulate complex, linked data structures benefit much less, if
at all. These applications often show random rather than
streaming access patterns and experience high latency, due
both to the random access and to cache pollution when only
a small portion of a cache line is used. Unfortunately, the
ubiquity of object-oriented, polymorphic design patterns re-
quired to solve difficult yet common tasks means that a great
many applications have significant phases that fall into this
latter data-centric category.

The architecture of stacked 3D memory that uses a base
logic layer to manage the DRAM arrays offers an opportu-
nity to accelerate data access for these applications. Since
the base layer is separate from the DRAM, additional func-
tionality can be introduced to process data within the mem-
ory package, exploiting the large in-package bandwidth and
reduced latency, without modifying DRAM fabrication. The
emergence of stacked DRAM with a distinct processing layer
such as the Micron Hybrid Memory Cube [11] has ignited
new enthusiasm from processing-in-memory researchers. For
many decades, the quest for memory integrated computing
has resulted in novel designs [14, 9, 3, 13, 6, 5, 8], with negli-
gible commercial follow-through due to cost. With 2.5D and
3D stacked DRAM connected to logic with through-silicon
vias (TSVs), the barrier to placing compute logic near mem-
ory is greatly reduced.

We have designed and emulated a hardware/software sys-
tem modeled on the HMC that places specialized data re-
arrangement hardware on the base layer. Our approach is a
new form of near memory computing that uses hardware in
the base logic layer to traverse and reorder data structures.
Using strided DMA units, gather/scatter hardware, and in-
memory scratchpad buffers, the programmable near mem-
ory data rearrangement engines perform fill and drain op-
erations to gather (resp. scatter) blocks of application data
structures. In contrast to processing in memory proposals
(e.g. [12]), our goal is to accelerate data access, making it
possible for the many CPU cores to compute on complex
data structures efficiently packed into cache.

Our system is designed to benefit data intensive applica-
tions with access patterns that have little spatial or temporal

Full Image

Reduced View

0

Nˊ
pixels

0

N

pixels

DRE
assembles view

0 M

0 Mˊ

Figure 1: Full and reduced resolution images. Ideally the
CPU would access the reduced view rather than the full
image.

access locality. Such access patterns occur even in strided
streaming accesses when the stride length exceeds cache line
size. Figure 1 shows an example from image processing: ex-
tracting a reduced resolution image from full resolution. The
application accesses every fourth pixel, resulting in wasted
memory bandwidth and cache occupancy for the unused por-
tions. Ideally the reduced resolution image on the left would
be accessed by the CPU. Other examples include switching
between row-wise and column-wise access to arrays, sparse
matrix operations [4], and pointer traversal.

In this work we explore the design of a data rearrange-
ment engine (DRE) and its interaction with the CPU, with
emphasis on the API. Within the DRE microarchitecture,
we focus on alternative implementations of an in-memory
scratchpad buffer used to hold rearranged data. Specifically,
we compare the relative merits of an SRAM vs. DRAM
scratchpad in performance and energy.

2. DATA REARRANGEMENT ARCHITEC-
TURE

Our proposed architecture targets data-centric applica-
tions for which memory latency is the primary bottleneck,
resulting in frequent stalls while cache lines are evicted and
filled. For these applications, data access might involve mul-
tiple loads from dispersed locations in which a small fraction
of a cache line fetched from memory is actually used. DMA
and gather/scatter hardware integrated with the CPU al-
lows the CPU to initiate data structure rearrangement, but
the full data structure must still traverse the memory bus. In
our near-memory approach, the data rearrangement engines
(DREs) are on the memory package, and only the restruc-
tured data traverses the memory bus.

2.1 DRE internals
As illustrated in Figure 2, we assume a system with CPU

connected to a memory package over one or more links as
in the HMC. The links connect to a switch and memory
controller in the logic layer. We add the DREs into the
logic layer, also connecting to the switch. Each data rear-
rangement engine holds a control processor (CP) and a Data

Data

Mover

Control

Processor

Links
Buffer

L2 Cache

L1 Cache

CPU

Core Data Rearrangement Engine (DRE)

3D Stacked

DRAM

Layers

Logic

Layer

Memory Subsystem

Processor

L2 Cache

L1 Cache

CPU

Core

L2 Cache

L1 Cache

CPU

Core

L2 Cache

L1 Cache

CPU

Core

To Switch

DRE

DRAM

Memory

Vault

DRAM

Memory

Vault

DRAM

Memory

Vault

DRAM

Memory

Vault

DRE DRE DRE

Shared L3 Cache

Switch

Figure 2: Near memory data rearrangement engines reside
in the logic layer of 3D memory.

Mover (DM). The CP receives commands from the CPU and
in turn issues commands to a DM capable of strided and
gather/scatter memory access. Both the DRE and CPU
can read or write a shared memory buffer, which is used to
hold a reordered view of the data.

A DRE works as an accelerator on behalf of a requesting
CPU process. The CPU part of the application sends com-
mands to a program running on the DRE control processor.
The CP sends commands to the DMA engine to transfer
data between DRAM banks and the view buffer. Both CPU
and DRE must explicitly manage cache coherence. Since
the DRE is issuing memory requests independently of the
CPU, virtual-to-physical address translation must also be
handled.

2.2 API
Upon request, an application process on the CPU acquires

a DRE. The application process specifies a CP program, and
the Operating System loads the program into CP instruc-
tion memory, which is also in the logic layer. The main
application and CP program communicate through a mem-
ory mapped address range: the application issues commands
and receives completion notification by writing and reading
pre-defined addresses. Commands include:

setup to load parameters, such as base addresses and either
DMA size and stride for DMA operations, or index
vector size and base address for gather/scatter;

fill to copy from DRAM to the view buffer according to
the access pattern established during setup;

drain to copy from the view buffer into DRAM according to
the access pattern established during setup.

For example in the case of the reduced resolution image,
the application issues setup to initialize the base addresses
for both full resolution and reduced resolution images, the
transfer block size, and the desired stride in a specific topol-
ogy (e.g. 2D or 3D image). The application then iteratively
executes the following steps: issues the fill command to tell
the DRE to fill the view buffer with a reduced resolution
image block; computes the desired operations (CPU instruc-
tions) on each block; and issues drain to store the block to
DRAM. If the original data is only read and not modified, a
call to drain is not needed. On the DRE side, the CP waits

for a command, runs the code for that command, and sends
a response message back to the application when the com-
mand has completed. To execute a setup command, the CP
copies parameters into internal registers. To execute a fill
or drain command, the CP sends a stream of fine-grained
operations to the Data Mover which accesses memory in a
contiguous, strided or indexed access pattern.

2.3 Synchronization
The CPU and DRE exchange control messages so that

the CPU can issue commands and await completion, and
similarly the DRE waits for commands, executes them, and
notifies completion. The interface is a set of reserved mem-
ory addresses. A set of addresses is reserved for the CPU to
write a command and its associated parameters. The DRE
receives a command message and sets internal state in the
CP according to the specified parameters. The CPU polls
for a completion message, which is sent by the DRE when
the command is completed. While the present implementa-
tion uses polling, lightweight event notification mechanisms
could be used as more efficient alternatives. Command re-
sponses can be decoupled from requests to allow for more
parallelism between units.

2.4 Consistency
The CPU accesses physical memory through a cache hier-

archy. Depending on the implementation, the DRE may also
use a cache. With multiple coherence domains, the problem
of consistency arises. This problem is present whenever mul-
tiple processors in disjoint coherence domains access shared
data. In our approach, the application’s CPU and DRE
components cooperate to maintain DRAM consistency by
issuing cache flush and invalidate operations at well defined
synchronization points such as preceding and following fill
operations. The flush/invalidate is done to the entire cache
or to an address range, depending on the size of the up-
dated region. Our implementations select the most efficient
option. The overhead of maintaining consistency must be
factored into evaluating the potential benefit of DREs.

When communicating between the CPU and the DRE
through shared memory, the sender must flush any gener-
ated data from cache and the receiver must invalidate any
cache lines associated with the memory region. Cache man-
agement on memory regions is often implemented with CPU
instructions that flush or invalidate a single cache line asso-
ciated with a given virtual address. Flushing or invalidat-
ing a block of memory requires repeated execution of these
cache instructions for each cache-line-sized segment in the
block. Furthermore, each cache level typically has its own
set of cache management instructions. An optimization used
in our approach is to only enable L1 cache for scratchpad
memory, which is used for the view buffer and possibly a
few other select structures shared by the CPU and DRE.
Disabling L2 and higher caches for scratchpad memory can
reduce the number of cache management operations by a fac-
tor of two or more. Since access patterns within scratchpad
memory are often streaming in nature, higher level caches
provide little or no benefit for this region.

2.5 Address translation
The CPU’s Memory Management Unit (MMU) translates

process virtual addresses to physical memory addresses. Mem-
ory requests from the DRE must also be translated, which

requires that the DRE have its own address translation ta-
ble. A general mechanism of mirroring the CPU MMU is
done in graphics processors and high performance network-
ing such as Infiniband. A similar mechanism has been de-
signed for some processing-in-memory approaches, e.g. [12].
We propose a simpler, but more restrictive approach and
require that data being accessed by the DRE resides in con-
tiguous physical pages. This can be accomplished by using a
custom allocator to gather a large contiguous physical range,
as is being developed in transparent large page support in
the OS, and by pinning pages (commonly done by network
interfaces in High Performance Computing systems) to pre-
vent subsequent relocation. The setup command gives the
base physical page address, and the DRE adds the base to
each address being loaded or stored. This requires minimal
additional hardware, adds no performance overhead as the
address can be assembled as it is loaded onto the request
queue, and virtually no energy overhead since it involves a
simple concatenation of bit fields.

2.6 Emulator
We have prototyped the DRE in Programmable Logic on

a Xilinx Zynq 7000 System on Chip, as shown in Figure 3.
The Zynq contains hard IP (labeled Processing System) and
programmable logic (PL). The PS includes two ARM cores
with private L1 and shared L2 caches and an SRAM scratch-
pad. There is also a hard memory controller in the PS and
a hard AXI interconnect. The PL can hold arbitrary FPGA
logic blocks. In the emulator, we have instantiated a DRE
and trace capture logic. The development board has two
1 GB DDR3 memories, labeled Program DRAM and Trace
DRAM. Program Memory holds the application instructions
and data, while the Trace DRAM records memory read and
write requests. Traces are captured non-intrusively by mon-
itoring traffic on the AXI interconnect.

The DRE subcomponents are shown in Figure 4. The con-
trol processor is emulated using the Xilinx MicroBlaze soft
processor. The CP includes a small cache, which must be
synchronized with the main CPU through explicit flush and
invalidate instructions. The CP executes instructions from
block RAM and receives CPU commands from the Stream
Switch connection to the Host Adapter. The CP sends com-
mands to the Data Mover through the Stream Switch as
well.

In our design, the main application code runs on the
ARM cores, issuing instructions to the MicroBlaze in pro-
grammable logic. The ARM, MicroBlaze, and Data Mover
can all read and write the Program Memory. Each of these
components uses a different clock. The ARM has several
programmable clocks capable of frequencies ranging from
under one MHz to hundreds of MHz. The clock frequency
in the PL depends on the complexity of the hardware de-
sign, but is usually not much more than 200 MHz. The
program DDR3 memory is clocked at 533 MHz resulting
in 1,066 megatransfers per second. These clocks must be
reconciled to emulate a reasonable processor/DRE/memory
system. We program the ARM and DRE clocks to coordi-
nated frequencies and use delay units in programmable logic
to increase memory access time by a corresponding amount.
By running the ARM core at a slower frequency and rout-
ing memory transactions through the delay units attached
to the AXI bus, we emulate a hypothetical 2.57 GHz 32-bit
ARM core with a 32-byte cache line and 5 GB/s memory

Programmable Logic (PL)

Processing System (PS)

Zynq SoC

Tr
ac
e&
Su
bs
ys
te
m
&

M
em

or
y&
Su
bs
ys
te
m
&

Ho
st
&S
ub

sy
st
em

&

Trace DRAM

SRAM

P
ro

gr
am

 D
R

A
M

AXI Performance
Monitor (APM)

ARM
Core

L2 Cache

ARM
Core

Accelerator Accelerator DRE

AXI Interconnect

Trace Capture
Device

Monitor

AXI Peripheral
Interconnect

BRAM

L1 L1

Delay Delay

Delay

Figure 3: Zynq SoC with emulation framework

Data Rearrangement Engine
(DRE)

Data Mover Control Processor

AXI Memory Interface

Local
Memory
Bus

Command Messages
(address, length…)

BRAM

To Peripheral
Interconnect

AXI Interconnect

Memory
Read and Write

Stream Switch FIFO
Host
Adapter

DMA operations MicroBlaze

Figure 4: Data rearrangement engine consists of a data
mover and control processor

bandwidth. The CP is emulated at 1.25 GHz with a 32-
bit data path, 16-byte cache line, and 5 GB/s of memory
bandwidth. The Data Mover runs at 1.25 GHz with a 64-bit
internal data path and a bandwidth of 10 GB/s.

DRAM delay is modeled at 45 ns, and SRAM at 10 ns. We
also model delay in the internal memory request queues at
20 ns and the round-trip latency on the serial link between
memory package and CPU at 24 ns. The DRAM, queue,
and link delays were derived from measurement on an Arira
Design HMC board [2], and the SRAM latency is an estimate
from the literature.

We use a simple energy model of 19.4 pJ/bit for DRAM,
1.0 pJ/bit for SRAM, and 10.3 pJ/bit for off-chip traversal.
The DRAM and off-chip estimates were derived from mea-
surement on the Arira Design board, and the SRAM esti-
mate is from the literature. In the emulation environment,
the application program runs in standalone mode, with one-
to-one virtual-to-physical mapping.

3. BENCHMARKS
To quantitatively evaluate the potential benefits of in-

memory data rearrangement for better performance and en-
ergy savings, we have implemented several benchmark pro-
grams. The benchmarks were chosen because they were
observed not to benefit from cache hierarchy, having little
cache line reuse and a high degree of partial cache line ac-
cess. The benchmarks were rewritten using the CPU-DRE
API (Section 2.2). Both original and DRE versions of the
benchmarks were run in the emulator. All versions of the
benchmarks are serial, and in the DRE versions, there is no
overlap between CPU and DRE operations.

3.1 Image Differencing
The image differencing benchmark is an adaptation of the

reduced resolution image example of Figure 1. This bench-
mark computes the pixel-wise difference of two reduced res-
olution images, storing the difference image to memory. The
DRE version uses the Data Mover’s strided access functions
to assemble the sub-sampled images. The application allo-
cates two view buffer areas to hold a portion of each reduced
resolution image and defines the decimation factor as a pa-
rameter to the setup command. The DRE uses this param-
eter to set the stride for DMA operations. In each iteration
of a loop, the CPU issues the fill command to the DRE. The
DRE fills the view buffers with pixels sub-sampled from the
original images, and notifies the CPU of completion. The
CPU then invalidates its cache, which will then be filled
from the updated view buffers, and takes the pixel differ-
ence, writing out the reduced size output image block to
memory. In the evaluation, a 16X decimation factor was
used.

3.2 RandomAccess
This benchmark [1], also known as “GUPS” (for giga up-

dates per second), is representative of extremely irregular
applications and is designed to measure memory performance
in the presence of a completely random access pattern. The
benchmark reads, modifies and writes back random elements
of a table that occupies up to half the total memory size. In
our benchmark the table is of size .5 GB. The benchmark it-
eratively performs the computation shown in Figure 5 where
ran is a sequence of random 64-bit numbers.

The DRE version uses the Data Mover’s gather/scatter

T[ran[j] & (TableSize -1)] ^= ran[j];

Figure 5: RandomAccess xor calculation updates a random
location.

functions to collect 64-bit elements from T indexed by the
ran vector. The CPU part of the application then performs
an XOR on the gathered elements, and then uses the DRE to
scatter the updated table elements. A detailed control flow is
shown in Figure 6. Before entering the depicted flow, caches
lines are assumed to be in a clean or invalid state. First, the
table T is initialized and explicitly flushed to memory. Then
the setup procedure is called to establish a reordered view of
the table elements based on the index array. After the view
is setup, the main loop repeatedly processes blocks of array
elements by filling, computing on, and draining the view
buffer. The index array is initialized with new values and
flushed before each block is processed. The CPU also sends
a message to the CP to invalidate the index array. Since the
DM does not have a cache, no cache management operations
are required for this processing unit. Cache maintenance is
also performed on the view buffer after the computation step
so that the view is consistent for the next iteration. The
fill and drain procedures start by sending a message to the
CP which then sequences the work done by the DM. After
configuring the index access pattern in the DM, the CP then
sends a stream of indexes to the DM to perform the gather
or scatter operation. Even though a synchronous control
flow is shown between the processing units, responses can be
decoupled from requests to allow for overlapped operations
and more parallelism.

3.3 PageRank
PageRank is a well-known data intensive algorithm that

ranks web pages by their relative importance. PageRank
models a web surfer that randomly follows links with ran-
dom restart. It is often iteratively computed as a stochastic
random walk with restart, where the initial page rank vector
is a uniformly distributed random number across all vertices
of a web graph. In this benchmark, we generate a synthetic
graph using the RMAT generator from the Graph500 bench-
mark with edge factor 16 (edge factor is defined as the ratio
of the graph’s edge count to its vertex count). We use an
adjacency list representation of the graph in which a list el-
ement holds the vertex id and its edge list, i.e. the ids of
its edge targets. The page rank vector contains one 64-bit
floating point number for each vertex. The algorithm iter-
ates through the list of vertices and updates each vertex’s
rank based on its connections.

In the DRE-assisted version, the setup and fill commands
are repeated for each vertex with a minimum number of
edges. The fill command uses a vertex’s edge list to gather
neighboring page rank values into the view buffer. The CPU
then calculates the rank from the values in the view buffer
and writes back a single value without the need for the drain
command. Since the edge lists are implemented as sepa-
rate index arrays in memory, the DRE setup command must
be called to establish a different view in each instance. In
the benchmark evaluation, a 222 vertex scale free graph was
used.

3.4 Sparse Matrix to Vector Multiply

This benchmark multiplies a sparse matrix with a dense
vector. Its access pattern is similar to PageRank in that
array elements are indexed out of order. Likewise, only the
gather function is needed since the source matrix and vector
are read only with the result going to another dense vector.

The benchmark code is adapted from Berkeley’s SpMV
BeBOP implementation [7], which creates banded synthetic
matrices similar to those used in real world applications.
Typical matrices range in size from dozens to millions of
rows and columns with between 5 and 200 non-zero elements
per row. The banded structure of the matrix is created by
placing a large percentage of the non-zero elements in the
primary diagonal section.

The sparse matrices are stored in Compressed Row Stor-
age (CRS) format, requiring an array to hold all non-zero
elements in the matrix, an array to hold the column index of
each element, and an array to hold the row pointers. These
data structures are sequentially accessed and can take ad-
vantage of pre-fetch hardware in conventional systems. The
dense vector is indirectly accessed by the gather hardware
through the column index array.

The CPU part of the applications does a setup by passing
the DRE a pointer to the dense vector, its element size, and
a pointer to the column index array. On each iteration the
CPU sends the DRE a fill command: it passes the DRE the
address and size of the output block along with its offset
in the view (for use when the block size is less than the
view size). The output block serves as a window into the
view established with the setup command. The CP issues
instructions to the DM to gather array elements into the
view buffer according to the access pattern specified in the
setup command. When the fill command is completed, the
CPU invalidates its cache so that it gets the updated view
buffer. Each value from the matrix source vector is then
multiplied with the corresponding value in the block and
accumulated. The accumulated value is stored by the CPU
into the result vector.

The major modification in the SpMV application comes
from setting up the data efficiently to use the view buffer.
A straightforward method would simply fill the view buffer
with a row of data, let the DRE rearrange that data, and
perform the computation on the output block. However, for
sparse matrices, where many rows contain only dozens (or
fewer) of non-zero elements, the overhead associated with
filling the view buffer is greater than the memory latency to
access the elements directly. To achieve performance gain,
the rows are batched together to fill the view buffer. In the
benchmark, the sparse matrix is of size 2M×2M with 34
non-zero elements per row.

4. EVALUATION
Using the emulator configured to model the latency of a

Gen2 HMC, we evaluated the DRE on the benchmark set.
Metrics consist of performance as measured by elapsed (em-
ulated) time and energy. Parameters of the study include
view buffer type and memory access unit. The view buffer
scratchpad memory is an integral part of our DRE system.
It is used by both CPU and DRE to exchange data blocks.
It enables a batched style of interaction, so that each proces-
sor can hand off an entire buffer of data rather than single
data items. The latency of synchronization between CPU
and CP makes it desirable to give the DRE large blocks of
data rearrangement tasks, and the view buffer makes this

CPU Control Processor (CP) Data Mover (DM)

Load data set & flush

setup();

Create index array

fill();

Compute

drain();

for each view

Save parameters

Cache invalidate indexes

Copy memory to view

Index array command

Send indexes

Save array base, element size

Copy view to memory

Index array command

Send indexes

Save array base, element size

Cache flush-invalidate indexes

Cache flush-invalidate view

Figure 6: Control flow for gather-scatter operations on an array showing usage of setup, fill and drain procedures.

possible.
Reserving a portion of the DRAM for the view buffer is the

simplest from a hardware design point of view – no changes
are required to the logic layer or the DRAM layers – and also
affords the most flexibility, since each application can size
the view buffer to its requirements. It does slightly reduce
DRAM capacity available to the application.

Alternatively, SRAM scratchpads can be sited on the logic
layer to be used as a view buffer and as a general pur-
pose scratchpad memory for the control processor. SRAM
is significantly faster than DRAM and incurs a lower energy
cost to access small data items. However, SRAM introduces
additional complexity into the logic layer at a higher cost,
and it is smaller in capacity than DRAM. In this study we
compare the benchmarks’ performance and energy with a
DRAM or an SRAM view buffer.

The second parameter is minimum access unit. The Gen2
HMC has a minimum size of 32 bytes. Even when a 16-
byte packet is requested, a full 32 bytes are accessed. The
irregular access patterns of our benchmark set often read or
write 8-byte data items. Therefore, we model a hypothetical
“narrow” memory capable of 8-byte accesses.

A previous study using the SRAM view buffer [10] addi-
tionally considered link latency at three settings, none (0 ns),
average (20 ns) and high (40 ns), to better model usage pat-
terns ranging from lightly to heavily loaded memory subsys-
tem. In this work, we report results for the average case of
20 ns.

The performance of the SRAM and DRAM view buffer
designs are compared in Figures 7. Speedup of the DRE
versions is normalized to the CPU only version. All the
benchmarks show speedup over the CPU only, but using an
SRAM view buffer gives consistently higher speedup. With
a DRAM view buffer, speedup is between 61% – 93% of
SRAM.

Energy reduction is shown for full memory access mode

3.45	

1.28	
1.82	

1.43	

2.46	

1.19	 1.11	 1.21	

0	

1	

2	

3	

4	

ImageDiff	 PageRank	 RandomAccess	 SpMV	

Speedup	 	
SRAM	 vb	 DRAM	 vb	

Figure 7: Speedup of CPU+DRE vs. CPU only. vb: view
buffer

2.62	

1.50	

1.95	 1.87	

1.32	
1.01	 0.90	

1.12	

0	

1	

2	

3	

ImageDiff	 PageRank	 RandomAccess	 SpMV	

Energy	 Reduc,on	 -‐	 Full	 Width	
SRAM	 vb	 DRAM	 vb	

Figure 8: Energy reduction for full width memory access of
CPU+DRE vs. CPU only. vb: view buffer

7.62	

2.26	

5.21	

3.58	 3.92	

1.76	 2.24	 2.38	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

ImageDiff	 PageRank	 RandomAccess	 SpMV	

Energy	 Reduc,on	 -‐	 Narrow	 Width	
SRAM	 vb	 DRAM	 vb	

Figure 9: Energy reduction for narrow width memory access
of CPU+DRE vs. CPU only. vb: view buffer

5.78	

2.47	

4.02	
3.60	 3.46	

2.17	
2.74	 2.44	

0	

1	

2	

3	

4	

5	

6	

7	

ImageDiff	 PageRank	 RandomAccess	 SpMV	

Speedup	 Upper	 Bound	
SRAM	 vb	 DRAM	 vb	

Figure 10: Speedup relative to maximum achievable. vb:
view buffer

with widths of 32 bytes and narrow access mode with widths
of 8 bytes in Figures 8 and 9 respectively. Energy is reduced
in all cases with SRAM, but only for ImageDiff and SpMV
with a DRAM view buffer. In fact, RandomAccess uses
more energy when constrained to full-width DRAM accesses.
Narrow access mode shows energy savings in all benchmarks
for both SRAM and DRAM view buffer designs. Results
indicate an advantage to the SRAM view buffer design and
to the narrow memory access mode. The DRAM design
shows a benefit in both speedup and energy in narrow mode,
and speedup in full access mode.

Figure 10 shows measured CPU+DRE speedup relative
to the maximum achievable. The upper bound is calculated
by setting the DRE time to zero, that is, either the DRE
is infinitely fast or the DRE time is completely hidden by
overlapped computation on the CPU. Our study measured
sequential execution of a single CPU core and a single DRE
in which they each wait for the other: the CPU gives the
DRE a command and then waits for the command to com-
plete before going to the next stage of work, and the DRE
waits for a command, executes it, and then goes idle until it
gets another command.

Comparing the upper bounds of SRAM and DRAM view
buffers, it is evident that the speedup potential is higher for
SRAM view buffers. Even when the effective DRE time is
zero, the slower DRAM access time for the CPU to read
and write the view buffer limits the maximum achievable
speedup.

5. CONCLUSIONS AND FUTURE WORK

In this work we have designed a novel off-load engine suit-
able for placement in a logic layer of emerging 3D mem-
ory stacks. The Data Rearrangement Engine performs in
memory restructuring of scattered data items into compact
view buffers that are accessed by applications running in the
CPU. The view buffer contains only data that is needed by
the CPU, assuring high cache occupancy. Further, compu-
tation on the data can take advantage of vector and SIMD
units in the CPU, which would not be possible in the original
data structure. In our benchmarks, the DRE-assisted Im-
ageDiff and RandomAccess benchmarks could be vectorized
on the emulator’s ARM NEON processor through compiler
directives. However, the double-precision, floating-point op-
erations in PageRank and SpMV were not vectorized be-
cause the NEON processor used on the emulator does not
support double-precision operations. In future work, we
will use a newer ARM-based emulator with double-precision
SIMD support to measure performance on vectorized floating-
point operations.

Our study was done with serial, non-overlapped bench-
marks. In the future, we plan to overlap computation and
communication in the single CPU single DRE configura-
tion by using multiple view buffers. It will likely be pos-
sible to achieve even more speedup with multiple cooper-
ating threads using their own CPU/DRE instances up to
the point of saturating memory bandwidth. Comparing
achieved speedup in the single core single DRE serial mode
to the upper bound shows that there is room for further
speedup once these common optimizations have been ap-
plied.

Finally, we will work with a larger application set to eval-
uate the choice of address translation methods. While a
simple base and bounds mechanism is more efficient, it may
not scale to terabyte size data sets without considerable ap-
plication refactoring, if at all. We will evaluate the use of
more general address translation tables, in particular, the
overhead of keeping the tables synchronized and the added
latency to load new table entries during fill or drain opera-
tions.

6. ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Lab-
oratory under contract No. DE-AC52-07NA27344. This
work was supported by Lawrence Livermore National Lab-
oratory LDRD project 013-ERD-25 Data-centric Architec-
tures. LLNL-PROC-675466

7. REFERENCES
[1] RandomAccess. http:

//icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/,
2012.

[2] Arira design. http://www.ariradesign.com, 2015.

[3] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M.
Kogge. A low cost, multithreaded
processing-in-memory system. In Workshop on
Memory Performance Issues at ISCA, pages 16–22.
ACM, 2004.

[4] P. C. Diniz and J. Park. Data reorganization engines
for the next generation of system-on-a-chip fpgas. In
Proceedings of the 2002 ACM/SIGDA Tenth

International Symposium on Field-Programmable Gate
Arrays, FPGA ’02, pages 237–244, New York, NY,
USA, 2002. ACM.

[5] J. Draper, J. T. Barrett, J. Sondeen, S. Mediratta,
C. W. Kang, I. Kim, and G. Daglikoca. A prototype
processing-in-memory (PIM) chip for the
data-intensive architecture (diva) system. The Journal
of VLSI Signal Processing, 40:73–84, 2005.

[6] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and
J. Torrellas. Programming the FlexRAM parallel
intelligent memory system. In Proceedings of the Ninth
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’03, pages
49–60, New York, NY, USA, 2003. ACM.

[7] H. Gahvari, M. Hoemmen, J. Demmel, and K. Yelick.
Benchmarking sparse matrix-vector multiply in five
minutes. In SPEC Benchmark Workshop, Austin, TX,
January 2007. http://bebop.cs.berkeley.edu.

[8] J. Gebis, S. Williams, C. Kozyrakis, and D. Patterson.
VIRAM1: A media-oriented vector processor with
embedded DRAM. In Student Design Contest, DAC,
2004.

[9] M. Gokhale, W. Holmes, and K. Iobst. Processing in
memory: The Terasys massively parallel PIM array.
IEEE Computer, 28(4):23–31, Apr 1995.

[10] S. Lloyd and M. Gokhale. In-memory data
rearrangement for irregular, data intensive computing.
In IEEE Computer special issue on Irregular
Applications, Aug. 2015.

[11] Micron. Hybrid Memory Cube.
http://www.hybridmemorycube.org/, 2011.

[12] R. Nair, S. Antao, C. Bertolli, P. Bose, et al. Active
Memory Cube: A processing-in-memory architecture
for exascale systems. IBM Journal of Research and
Development, 59(2/3):17:1–17:14, March-May 2015.

[13] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level
memory thread for correlation prefetching. In
Proceedings of the 29th annual international
symposium on Computer architecture, ISCA ’02, pages
171–182, Washington, DC, USA, 2002. IEEE
Computer Society.

[14] H. S. Stone. A logic-in-memory computer. Computers,
IEEE Transactions on, C-19(1):73–78, Jan 1970.

